

Welcome to phaseshifts’s documentation!

Contents:

	1. Introduction
	1.1. About the code
	1.1.1. Alternatives

	2. Installing the phaseshifts package
	2.1. TDLR;

	2.2. Details

	3. Running

	4. Contact

	5. Acknowledgements
	5.1. Thanks

	6. Scripts
	6.1. phsh.py
	6.1.1. Command line usage

	6.1.2. CLEED compatibility

	7. phaseshifts API
	7.1. Package Contents

	7.2. Subpackages

	7.3. Submodules
	7.3.1. phaseshifts.atorb

	7.3.2. phaseshifts.conphas

	7.3.3. phaseshifts.elements

	7.3.4. phaseshifts.leed

	7.3.5. phaseshifts.model

	7.3.6. phaseshifts.phsh

	8. phshift2007 Porting Notes
	8.1. Compiler Notes

	8.2. Compiler Test Matrix

	8.3. Known Issues

	9. Author list
	9.1. Get Involved

	10. License

	11. APPENDIX I: Barbieri/Van Hove Phase Shift Package - A Brief User Guide
	11.1. Acknowledgement notice

	11.2. Contact

	11.3. Contents

	11.4. Overview of the Programs
	11.4.1. Step 0: PhSh0.for

	11.4.2. Step 1: PhSh1.for

	11.4.3. Step 2: PhSh2cav.for, PhSh2wil.for & PhSh2rel.for

	11.4.4. Step 3: PhSh3.for

Indices and tables

	Index

	Module Index

	Search Page

1. Introduction

This package is a Python-based implementation of the Barbieri/Van Hove
phase shift (phsh) calculation package needed to produce phase shifts for
various LEED packages (including CLEED), as well as for certain XPD packages.

To quote the original authors’ site:

“The phase shift calculation is performed in several steps:

	Calculation of the radial charge density for a free atom.

	Calculation of the radial muffin-tin potential for atoms embedded in a
surface defined by the user (the surface is represented by a slab that
is periodically repeated in 3 dimensions, within vacuum between the
repeated slabs); various approximations to the exchange potential
are available; relativistic effects are taken into account.

	Calculation of phase shifts from the muffin-tin potential.

	Elimination of pi-jumps in the energy dependence of the phase shifts.”

Note

You can get the original Fortran source
(& learn more about the phsh programs) from:

http://www.icts.hkbu.edu.hk/surfstructinfo/SurfStrucInfo_files/leed/leedpack.html

A local copy of the source files can be found under phaseshifts/lib/.phsh.orig/phsh[0-2].f.

The aim of this package is to both automate and simplify the generation of
phase shift files in a manner that is easy for the computational hitch-hiker,
but powerful for those that wish to extend the package for particular needs.

1.1. About the code

The example source codes provided in this package are intended to be
instructional in calculating phase shifts. While it is not recommended to
use the example code in production, the code
should be sufficient to explain the general use of the library.

If you aren’t familiar with the phase shift calculation process, you can
read further information in doc/ folder:

	phshift2007.rst -
a brief user guide/documentation concerning the input files
(& details of the original fortran phshift package).

	phaseshifts API reference - a more detailed overview of the library
functions and how to calculate phase shifts using the convenience functions in this package.
This is not yet finished and so the reader is referred to the above document for the time being.

For those wanting a crash course of the Van Hove / Tong programs, I advise reading the
phsh2007.txt document.
See the examples/ directory to get an idea of the structure of the input files
(for a random selection of models & elements). In particular see the cluster_Ni.i
file for helpful comments regarding each line of input.

Tip

There is also a nice diagram overview (ignoring the LEED parts) contained within the
AQuaLEED poster [https://physics.mff.cuni.cz/kfpp/povrchy/files/1179-Poster.pdf]
available online.

Those of you who are eager to generate phase shifts - first look at the example
cluster files for a bulk and slab calculation, noting that the atoms in the model
are in fractional units of the a basis vector for the unit cell (SPA units). Next,
after creating a bulk and slab model in the cluster.i format, simply use
the following python code:

>>> from phaseshifts.phsh import Wrapper as phsh
>>> phsh.autogen_from_inputs(bulk_file, slab_file)

This will hopefully produce the desired phase shift output files (at least for
simple models) and works by assessing the two models to determine what output to
produce. For more detailed documentation and function use refer to the pdf manual.

Tip

A standalone command line utility phsh.py is provided as a way of
automating the generation of phase shifts as part of a script. For more
information use:

phsh.py --help

Note

The phaseshifts.leed module provides a conversion class for CLEED .inp and
.bul files. This is included as part of the phsh.py module,
however the file extension is important (needs .inp, .pmin, .bul,
or .bmin) and error checking is limited. There are also plans to include a
validator to check the files for mal-formatted input at some point in the
future.

1.1.1. Alternatives

A number of alternatives are available, notably the following:

	AQuaLEED [https://physics.mff.cuni.cz/kfpp/povrchy/files/] (with a useful
poster overview of phaseshifts calculations [https://physics.mff.cuni.cz/kfpp/povrchy/files/1179-Poster.pdf]).
This is an officially mentioned piece of software on Michel Van Hove’s
LEED Calculation Homepage [https://www.icts.hkbu.edu.hk/VanHove_files/leed/leedpack.html].
Furthermore, although the poster mentions that the software is written in python,
this software is not (currently) distributed on https://PyPI.org (or via alternative means such as a docker image
on DockerHub [https://www.docker.com/products/docker-hub/]) and therefore harder to
intergrate with other python LEED-related projects such as CLEED [https://github.com/Liam-Deacon/CLEED]
and cleedpy [https://github.com/empa-scientific-it/cleedpy].

	Elastic Electron-Atom Scattering in Solids and Solid Surfaces
(EEASiSSS) [https://www.researchgate.net/profile/John-Rundgren-2/publication/235583683_Optimized_surface-slab_excited-state_muffin-tin_potential_and_surface_core_level_shifts/links/5a266f89a6fdcc8e866bd7e5/Optimized-surface-slab-excited-state-muffin-tin-potential-and-surface-core-level-shifts.pdf]
is authored by John Rundgren and first described in the paper: “J. Rundgren Phys. Rev. B 68 125405 (2003)”.
This program takes a different approach to calculating phase shifts by using optimised muffin-tin potentials
for surface slabs with preassigned surface core-level shifts.
Whilst the source code is not publicly available online (to this author’s best knowledge), John Rundgren
has been more than happy to assist when approached in the past.

Note

It would be fantastic to include this software (and document it’s use) as part of the phaseshifts python package
allowing the user to choose the backend they wish to use for calculating phase shifts (e.g. EEASiSSS or phshift2007).
As such John Rundgren [https://www.researchgate.net/profile/John-Rundgren-2] should be contacted to see if
he would be happy to collaborate on making this possible. This is being tracked by
this item [https://github.com/Liam-Deacon/phaseshifts/issues/92].

	A fortran program is described in “McGreevy, E., & Stewart, A.L. (- Apr 1978). [https://inis.iaea.org/search/search.aspx?orig_q=RN:9399501]
A program for calculating elastic scattering phase shifts for an electron colliding with a one-electron target using perturbation theory.
Computer Physics Communications, 14(1-2), 99-107.”, however this code is not publicly available online (pay-walled by journal).

Note

Should you know of alternatives, please either
open an issue [https://Liam-Deacon/phaseshifts/issues] or
(better yet) create a PR with changes to this documentation
to keep this list up to date.

2. Installing the phaseshifts package

2.1. TDLR;

For python 3.11 or older:

pip install wheel numpy setuptools

latest pypi release
pip install phaseshifts

or local version with essential packages for development
git clone https://github.com/Liam-Deacon/phaseshifts
cd phaseshifts
pip install -e .[dev,test] # !! best do this in a virtualenv

phsh --help

2.2. Details

The phaseshifts [http://https://pypi.python.org/pypi/phaseshifts/] package
requires CPython 2.7 or later and also uses the numpy [http://www.scipy.org/scipylib/download.html], scipy [http://www.scipy.org/scipylib/download.html] and periodictable [http://https://pypi.python.org/pypi/periodictable] packages.
Currently, it has only been tested extensively with Python 2.7 on Windows, so
there are no guarantees with other platforms. To perform a setup follow the
steps below.

	Install the numpy, scipy and periodictable packages.

On systems compatible with PyPI this can be done using the command:

pip install numpy scipy periodictable

Or if you have the easy_install package:

easy_install install numpy scipy periodictable

Older versions of numpy & scipy did not allow simultaneous installation -
if you experience problems then try first installing numpy before
attempting to install scipy.

The periodictable package allows lookup of the most common crystal
structure for a given element and is instrumental in many of the
convenience functions contained in the model module.

Alternatively download and install these packages manually following the
instructions provided for the respective packages.

	To install the phaseshifts package:

pip install phaseshifts

Note

Until a pyproject.toml with a working PEP-517 build backend
is implemented then the user will first need to run
pip install numpy setuptools wheel in order to have the necessary
python pre-requisites available (along with a fortran compiler) in order
to compile the FORTRAN source and wrap it to be available via python.

Tip

Running make check with run a test suite designed to catch issues with
the installation (however the pytest package is required).

With any luck the package has been installed successfully. A set of test scripts
are provided, however a simple check may suffice using an interactive session of
the python interpreter:

>>> import phaseshifts
>>> from phaseshifts.lib import libphsh # compiled FORTRAN .pyd or .so using f2py

If these execute without errors then it is likely that all is well, but in case of
problems or bugs please use the contact provided below and I will do my best to
address the problem quickly.

Tip

On Windows systems it may be easier to install a scientific python distibution
rather than install the dependencies from source - Python(x,y) [http://code.google.com/p/pythonxy] or
Anaconda [https://www.anaconda.com/download] with mingw (gcc & gfortran)
installed is highly recommended. Mac OS X users can simply do brew install gfortran
and Debian/Ubuntu users can do sudo apt-get install -y gfortran.

Note

On unix systems, setup the virtualenv on Python 3.10 or lower, activate it and run make.

Warning

Python 3.12 compatibility is a work in progress due to the removal of numpy.distuils
build backend for f2py preventing simple installation via pip install,
this github issue [https://github.com/Liam-Deacon/phaseshifts/issues/8]
tracks progress on fixing this known issue.

3. Running

The phsh.py script (available after installing the package) aims to simplify these
steps with a single command.

The simplest and most reliable cross-platform way to run phsh.py is through docker:

obtain the image
docker pull ghcr.io/Liam-Deacon/phaseshifts:latest # should only need to do this once

run phsh.py via the docker image
docker run ghcr.io/Liam-Deacon/phaseshifts:latest # will display usage

or more generally (adjust as needed)
docker run ghcr.io/Liam-Deacon//phaseshifts:latest -v /path/to/host/input/data:/data [<phsh-args> ...]

Tip

Development docker images can be built locally, e.g.
DOCKER_TAG=dev make docker

Warning

There is a known possible bug [https://github.com/Liam-Deacon/phaseshifts/issues/6]
where the compiled libphsh.f is not thread-safe (as ascertained by the fortran compiler),
as such if you anticipate using this library in concurrent environments then it is advised to
run phsh.py via docker run ghcr.io/Liam-Deacon/phaseshifts:latest as this works around
this limitation due to the emphereal nature of container instances created using docker run.

4. Contact

This package is developed/maintained in my spare time so any bug reports, patches,
or other feedback are very welcome!

The project is (still) in the early developmental stages and so anyone who wishes to get
involved are most welcome, go to https://github.com/Liam-Deacon/phaseshifts/issues
to get started.

5. Acknowledgements

As with all scientific progress, we stand on the shoulders of giants. If this
package is of use to you in publishing papers then please acknowledge the
following people who have made this package a reality:

	A. Barbieri and M.A. Van Hove - who developed most of the original
fortran code. Use A. Barbieri and M.A. Van Hove, private communication.
(see doc/phsh2007.txt for further details).

	E.L. Shirley - who developed part of the fortran code during work towards his
PhD thesis (refer to the thesis: E.L. Shirley, “Quasiparticle calculations in
atoms and many-body core-valence partitioning”, University of Illinois, Urbana, 1991).

	Christoph Gohlke - who developed the elements.py module used extensively throughout
for the modelling convenience functions (see ‘elements.py’ for license details).

I would also be grateful if you acknowledge this python package (phaseshifts) as:
L.M. Deacon, private communication.

5.1. Thanks

I wish to personally add a heartfelt thanks to both Eric Shirley and Michel Van Hove
who have kindly allowed the use of their code in the libphsh.f file needed for the
underlying low-level functions in this package.

6. Scripts

6.1. phsh.py

6.1.1. Command line usage

The phsh.py script is placed into the system PATH during installation of the
phaseshifts package. It can then be used from the command line, e.g. phsh.py --help
will produce a list of command line options:

usage: phsh.py [-h] -b <bulk_file> -i <slab_file> [-t <temp_dir>] [-l <lmax>]
 [-r <start_energy> <final_energy> <step>] [-f <format>]
 [-S <subdir>] [-v] [-V]

phsh - quickly generate phase shifts

 Created by Liam Deacon on 2013-11-15.
 Copyright 2013-2014 Liam Deacon. All rights reserved.

 Licensed under the MIT license (see LICENSE file for details)

 Please send your feedback, including bugs notifications
 and fixes, to: liam.deacon@diamond.ac.uk

 usage:-

 optional arguments:
 -h, --help show this help message and exit
 -b <bulk_file>, --bulk <bulk_file>
 path to MTZ bulk or CLEED *.bul input file
 -i <slab_file>, --slab <slab_file>
 path to MTZ slab or CLEED *.inp input file
 -t <temp_dir>, --tmpdir <temp_dir>
 temporary directory for intermediate file generation
 -l <lmax>, --lmax <lmax>
 Maximum angular momentum quantum number. [default: 10]
 -f <format>, --format <format>
 Use specific phase shift format i.e. 'cleed', 'curve'
 or 'none'. Choose 'curve' if you wish to produce
 XYY... data for easy plotting. <format> is case
 in-sensitive. [default: 'cleed']
 -r <energy> [<energy> ...], --range <energy> [<energy> ...]
 Energy range in eV with the format:
 '<start> <stop> [<step>]', where the <step> value is
 optional. Valid for relativistic calculations
 only. [default: (20, 600, 5)]
 -S <subdir>, --store <subdir>
 Keep intermediate files in subdir when done
 -v, --verbose set verbosity level [default: None].
 -V, --version show program's version number and exit

6.1.2. CLEED compatibility

It is possible to use this script to generate phase shift files iteratively
during a geometry search for the CLEED package. In this manner phase shifts
will be generated at the beginning of each cycle of the search.

For this to work, the environment variable CSEARCH_LEED must point to the
phsh.py script, which will invoke the LEED program in PHASESHIFT_LEED
after execution. When operating in this mode, the following assumptions are made:

	-b <bulk_file> option is not needed and the filename is assumed by
changing the file extension of <slab_file> to ‘.bul’

	-f CLEED format is implied.

	The generated phase shifts are stored in the directory set by the
CLEED_PHASE environment variable, however a named copy with the
iteration number (read from the matching ‘.log’ file) will be placed in the
same directory as the <slab_file>.

	<lmax> is equal to 10, unless additional parameter syntax is given in the CLEED
*.inp file. To use phase shift specific lmax values, then add a new line with:

lmax: <phase_shift> <lmax>

for each phase shift you wish to have a different lmax to that of the default.

	The element and oxidation of each atom in a model is guessed by reading the phase
shift tag from the CLEED input file. For example:

po: O_2-_COOH ...

will be interpreted as a Oxygen with a -2 oxidation state and with a unique name
tag of “O_2-_COOH” to show it is in a carboxylic group. Note the ‘-’ may be at
the beginning or the end of the oxidation sub-string. If no oxidation state is
given then the atom is assumed to have zero charge.

	The muffin-tin radius of the phase shift species is guessed from lines with:

rm: <phase_shift> <radius>

However, if no value is found the radius is guessed from the
ELEMENTS dictionary within phaseshifts.elements depending on the
valency of the given phase shift element.

A full list of additional syntax to customise the generation of the phase shifts
when using CLEED input files can be found in
phaseshifts.leed.Converter.import_CLEED().

Note

If the PHASESHIFT_LEED environment variable is not found, but
CLEED_PHASE is, however, found then the program will place the generated
files in this directory unless a specific -S <subdir> is provided.

7. phaseshifts API

7.1. Package Contents

This chapter covers the main modules of the phaseshifts and provides some API documentation
for those wishing to incorporate this package into their own projects.

7.2. Subpackages

	The main sub packages are listed below:
	
	phaseshifts.gui - includes all the necessary files for the graphical user interface.

	phaseshifts.lib - contains the Fortran libphsh library and the python wrappings.

	phaseshifts.doc - source documentation for the phaseshifts package.

	phaseshifts.test - modules for testing the phaseshift package.

7.3. Submodules

7.3.1. phaseshifts.atorb

atorb.py

Provides convenience functions for generating input and calculating
atomic charge densities for use with the Barbieri/Van Hove phase
shift calculation package.

	See:

	http://www.icts.hkbu.edu.hk/surfstructinfo/SurfStrucInfo_files/leed/

	Requires:

	f2py (for libphsh fortran wrapper generation)

Note

To generate libphsh fortran wrappers (libphsh.pyd) for your platform
then use ‘python setup.py’ in the lib directory of this package to
install into your python distribution. Alternatively, use:

f2py -c -m libphsh libphsh.f

Windows users may have to add appropriate compiler switches, e.g.

32-bit
f2py -c -m libphsh --fcompiler=gfortran --compiler=mingw-32 libphsh.f

64-bit
f2py -c -m libphsh --fcompiler=gfortran --compiler=mingw-64 libphsh.f

	
class phaseshifts.atorb.Atorb(**kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Notes

Original author: Eric Shirley

There are nr grid points, and distances are in Bohr radii
[image: a_0 \simeq 0.539 \mathrm{\AA}]

[image: r(i) = r_{min} \cdot (r_{max} / r_{min})^{(i/n_r)}],
[image: i=1,2,3,...n_r-1,n_r]

The orbitals are stored in phe(), first index goes [image: 1...n_r], the
second index is the orbital index ([image: i...n_{el}])

Look at the atomic files after printing this out to see everything…
Suffice it to say, that the charge density at radius [image: r(i)]
in units of electrons per cubic Bohr radius is given by:

[image: \sum_{j-1}^{n_el}{occ(j) \cdot phe(i,j)^2 / (4.0\,\pi\,{r(i)^2)}}]

Think of the phe functions as plotting the radial wave-functions
as a function of radius on a logarithmic mesh…

The Dirac equation is solved for the orbitals, whereas their density
is treated by setting [image: phe(i,j)] to Dirac’s
[image: \sqrt{F(i,j)^2 + G(i,j)^2}] times the sign of [image: G(i,j)]…

So we are doing Dirac-Fock, except that we are not treating exchange
exactly, in terms of working with major and minor components of the
orbitals, and the phe’s give the CORRECT CHARGE DENSITY…

The above approximation ought to be very small for valence states,
so you need not worry about it…

The Breit interaction has been neglected altogether…it should not
have a huge effect on the charge density you are concerned with…

	
static calculate_Q_density(**kwargs)

	
	Parameters:

	
	kwargs may be any of the following.
	

	elementint or str, optional
	Generate element atorb input file on the fly. Additional
kwargs may be used to govern the structure of the input
file - please use help(phaseshifts.Atorb.gen_input)
for more information.

	inputstr, optional
	Specify atorb input file otherwise will use the class
instance value.

	output_dirstr, optional
	Specify the output directory for the at_*.i file
generated, otherwise the default current working directory
is used.

	Returns:

	
	strfilename
	

Examples

>>> Atorb.calculate_Q_density(input='atorb_C.txt')
 18.008635 -33.678535
 4.451786 -36.654271
 1.569616 -37.283660
 0.424129 -37.355634
 0.116221 -37.359816
 0.047172 -37.360317
 0.021939 -37.360435
 0.010555 -37.360464
 0.005112 -37.360471
 0.002486 -37.360473
 0.001213 -37.360473
 0.000593 -37.360473
 0.000290 -37.360474
 N L M J S OCC.
 1 0 0 -1/2 1 2.0000 -11.493862
 2 0 0 -1/2 1 2.0000 -0.788618
 2 1 1 -1/2 1 0.6667 -0.133536
 2 1 1 -3/2 1 1.3333 -0.133311
 TOTAL ENERGY = -37.360474 -1016.638262

>>> Atorb.calculate_Q_density(element='H')
 0.500007 -0.343752
 0.152392 -0.354939
 0.065889 -0.357254
 0.028751 -0.357644
 0.012732 -0.357703
 0.005743 -0.357711
 0.002641 -0.357712
 0.001236 -0.357713
 0.000587 -0.357713
 0.000282 -0.357713
 N L M J S OCC.
 1 0 0 -1/2 1 1.0000 -0.229756
 TOTAL ENERGY = -0.357713 -9.733932

	
static gen_input(element, **kwargs)

	
	Parameters:

	
	elementint or str
	Either the atomic number, symbol or name for a given element

	outputstr, optional
	File string for atomic orbital output (default: ‘at_<symbol>.i’)

	ngridint, optional
	Number of points in radial grid (default: 1000)

	relbool, optional
	Specify whether to consider relativistic effects

	filenamestr, optional
	Name for generated input file (default: ‘atorb’)

	headerstr, optional
	Comment at beginning of input file

	methodstr, optional
	Exchange correlation method using either 0.0=Hartree-Fock,
1.0=LDA, -alpha = xalpha (default: 0.0)

	relicfloat, optional
	Relic value for calculation (default: 0)

	mixing_SCFfloat, optional
	Self consisting field value (default: 0.5)

	tolerancefloat, optional
	Eigenvalue tolerance (default: 0.0005)

	echfloat, optional
	(default: 100)

	
static get_quantum_info(shell)

	
	Returns:

	
	tuple(int, int, list[float, float], list[float, float])
	(n, l, j=[l-s, l+s], occ=[[image: n^-_r], [image: n^+_r]])

Notes

	n is the principle quantum number ([image: n > 0]).

	l is the azimuthal quantum number ([image: 0 \leq l \leq n-1]).

	s is the spin quantum number ([image: s \pm \frac{1}{2}]).

	j is the total angular momentum quantum numbers for both
[image: l-s] or [image: l+s], respectively.

	[image: n_r] is the occupancy of the spin-split [image: l-s]
and [image: l+s] levels, respectively.

	
static replace_core_config(electron_config)

	
	Parameters:

	
	electron_configstr
	String containing the electronic configuration of the given
element.

	Returns:

	
	str
	A substituted string where the nobel gas core has been replaced.

Examples

>>> Atorb.replace_core_config('[Ar] 4s2')
 '1s2 2s2 2p6 3s2 3p6 4s2'

>>> Atorb.replace_core_config('[Xe] 6s2 5d1')
 '1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 5s2 4d10 5p6 6s2 5d1'

	
phaseshifts.atorb.get_electron_config(element_obj)

	Obtain the electronic orbital configuration for the given element_obj.

	
phaseshifts.atorb.get_element(element: str [https://docs.python.org/3/library/stdtypes.html#str], backend: Literal [https://docs.python.org/3/library/typing.html#typing.Literal]['mendeleev', 'elementy', 'periodictable'] | None [https://docs.python.org/3/library/constants.html#None] = None) → object [https://docs.python.org/3/library/functions.html#object]

	Obtain an element object for querying information using backend.

7.3.2. phaseshifts.conphas

conphas.py

Provides a native python version of the conphas (phsh3) FORTRAN program
by W. Moritz, which is distributed as part of the SATLEED code
(see “Barbieri/Van Hove phase shift calculation package” section) and can
be found at: http://www.icts.hkbu.edu.hk/surfstructinfo/SurfStrucInfo_files/
leed/leedpack.html

The Conphas() class also provides a number of convenience functions (see
docstrings below).

7.3.2.1. Examples

>>> from os.path import join
>>> from phaseshifts.conphas import Conphas
>>> con = Conphas(output_file=join('testing', 'leedph_py.d'), lmax=10)
>>> con.set_input_files([join('testing', 'ph1')])
>>> con.set_format('cleed')
>>> con.calculate()

	
class phaseshifts.conphas.Conphas(input_files=[], output_file=[], formatting=None, lmax=10, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class Conphas

Notes

This work is based on the original conphas (phsh3) FORTRAN program by
W. Moritz, which is distributed as part of the SATLEED code (see
“Barbieri/Van Hove phase shift calculation package” section) and can be
found at: http://www.icts.hkbu.edu.hk/surfstructinfo/SurfStrucInfo_files/
leed/leedpack.html

	
__fix_path(file_path)

	Fix escaped characters in filepath

	
__set_data(data=None)

	

	
calculate()

	Calculates continuous phase shifts from input file(s).

Examples

>>> con = Conphas(output_file=r'testing\leedph_py.d', lmax=10)
>>> con.set_input_files([r'testing\ph1'])
>>> con.set_format('cleed')
>>> con.calculate()
 L = 0
 jump between 25.0 eV and 30.0 eV; IFAK = -1
 L = 1
 jump between 65.0 eV and 70.0 eV; IFAK = -1
 L = 2
 jump between 20.0 eV and 25.0 eV; IFAK = 1
 jump between 80.0 eV and 85.0 eV; IFAK = 0
 L = 3
 L = 4
 jump between 275.0 eV and 280.0 eV; IFAK = 1
 L = 5
 L = 6
 L = 7
 L = 8
 L = 9
 L = 10

	
load_data(filename)

	Load (discontinuous) phase shift data from file

	Parameters:

	
	filestr
	Path to phase shift file.

	Returns:

	
	tuple: (double, double, int, int, ndarray)
	(initial_energy, energy_step, n_phases, lmf, data)

Notes

	initial_energy is the starting energy of the phase shifts.

	energy_step is the change in energy between consecutive values.

	n_phases is the number of phase shifts contained in the file.

	lmf is the maximum azimuthal quantum number considered.

	data is a (2 x n_phases) array containing the phase shift data.

	
read_datafile(filename)

	Read in discontinuous phase shift file

	Parameters:

	
	filenamestr
	The path to the discontinuous phase shift file

	
set_format(formatting=None)

	Set appropriate format from available options

	Parameters:

	
	formatstr, optional
	The format identifier for different packages; can be ‘cleed’
or None.

	
set_input_files(input_files=[])

	set list of input filenames

	
set_lmax(lmax)

	Set max orbital angular momentum (azimuthal quantum number)

	Parameters:

	
	lmaxint
	Maximum azimuthal quantum number to be considered in calculations.

	
set_output_file(output_file)

	set output filename

	
static split_phasout(filename, output_filenames=[])

	split phasout input file into separate files

7.3.3. phaseshifts.elements

Properties of the chemical elements.

Each chemical element is represented as an object instance. Physicochemical
and descriptive properties of the elements are stored as instance attributes.

	Author:

	Christoph Gohlke [http://www.lfd.uci.edu/~gohlke/]

	Version:

	2013.03.18

7.3.3.1. Requirements

	CPython 2.7, 3.2 or 3.3 [http://www.python.org]

7.3.3.2. References

	http://physics.nist.gov/PhysRefData/Compositions/

	http://physics.nist.gov/PhysRefData/IonEnergy/tblNew.html

	http://en.wikipedia.org/wiki/%(element.name)s

	http://www.miranda.org/~jkominek/elements/elements.db

7.3.3.3. Examples

>>> from elements import ELEMENTS
>>> len(ELEMENTS)
109
>>> str(ELEMENTS[109])
'Meitnerium'
>>> ele = ELEMENTS['C']
>>> ele.number, ele.symbol, ele.name, ele.eleconfig
(6, 'C', 'Carbon', '[He] 2s2 2p2')
>>> ele.eleconfig_dict
{(1, 's'): 2, (2, 'p'): 2, (2, 's'): 2}
>>> sum(ele.mass for ele in ELEMENTS)
14659.1115599
>>> for ele in ELEMENTS:
... ele.validate()
... ele = eval(repr(ele))

7.3.4. phaseshifts.leed

7.3.5. phaseshifts.model

7.3.6. phaseshifts.phsh

8. phshift2007 Porting Notes

This document contains notes on porting the original Barbieri / Van Hove
phshift2007 [https://www.icts.hkbu.edu.hk/VanHove_files/leed/phshift2007.zip]
phase shift package code into the phaseshifts package.

In order to compile the FORTRAN code on a modern system, a number of changes were
made, including:

	The original code was written in FORTRAN 77 with some FORTRAN 66 features
that are not allowed in common open source f77 compilers such as gfortran and flang.
In addition, some language-intrinsic functions were not portable such as DFLOAT
and were replaced with the equivalent standard functions, e.g. DFLOAT
(a GNU extension) was replaced with DBLE [1] and dexp replaced with exp.

	In order to use as a callable library, PROGRAM units were replaced with SUBROUTINE
blocks. As part of this process these subroutines gained additional parameters for the input/output
file names. Without these changes there would be multiple main blocks and the code would not be
suitable for inclusion in a shared library.

	Data types were updated to be FORTRAN 77 compatible. Notably, HOLLERITH [2] constants
representing string constants were replaced with the standard CHARACTER type.

	Leading tabs were replaced with 7 spaces to avoid -Wtabs warnings on gfortran due to the
fact that tabs are not members of the Fortran Character Set [3] .

Additional changes were made to improve the readability of the code:

	Translated the comments in PHSH3.FOR (i.e. the CONPHAS program) from German to English.
A python implementation can be found under phaseshifts.conphas.

	Trailing whitespace was removed from all lines.

	Continuation lines such as those starting with ' 1' were replaced with ' +' to
improve readability by more easily distinguishing continuation lines from labels.

	real*8 was replaced with double precision (and related casts, i.e. dfloat to dble).

	GOTO semantics and DO with labels were refactored to more closely resemble other modern
programming language constructs.

	c$OMP PARALLEL DO blocks were added where appropriate to allow for parallel execution of
loops via OpenMP. This is only enabled when compiling with -fopenmp.

[1]
https://github.com/Liam-Deacon/phaseshifts/commit/fbd701e20f83d4eca90e5d90ef696d8316717d41

[2]
https://en.wikipedia.org/wiki/Hollerith_constant#Examples

[3]
https://gcc.gnu.org/onlinedocs/gfortran/Error-and-Warning-Options.html#index-Wtabs

Danger

Even with the original code, the LEED Calculation Home Page offers no guarantees of correctness
in the calculated phase shifts. Furthermore, compiling the code with a modern compiler
against an unknown benchmark means that there are no assurances that the compiled programs
will produce the same results as the original code authors’ intended. There are probably plenty
of bugs, as such please open an issue if you find any.

Note

A notebook guiding the user through the initial porting process can be found at
porting-phshift2007-notes.ipynb [https://github.com/Liam-Deacon/phaseshifts/blob/master/porting-phshift2007-notes.ipynb]

[image: _images/badge_logo.svg]
 [https://mybinder.org/v2/gh/Liam-Deacon/phaseshifts/HEAD?labpath=porting-phshift2007-notes.ipynb]

Warning

Significant changes were made to the original code in order to port it for f2py.
Artifacts of this process are likely present in the code and may cause unexpected
behaviour that deviates from the original intended purpose. As such, if you are
looking for a reference implementation of the original code, please run
make phshift2007 and sudo make install, which will download the original
phshift2007 package, compile the phsh* programs and install them to $PREFIX/bin
(this is /usr/local/bin by default). They will then be available to run from the
command line.

Tip

Should you not trust the bundled f2py library, then a future version of phsh.py
will allow you to run the original phshift2007 programs via wrapped subprocess calls.

8.1. Compiler Notes

When originally porting the code back in 2014, the code was compiled with f2py,
Python 2.7 (32-bit) and the mingw32 toolchain on Windows 7 (installed together
via Python(x, y) [https://python-xy.github.io/] version <2.7.6.1). This was
a more permissive compiler toolchain than modern GCC-toolchain gfortran [https://gcc.gnu.org/fortran/]
and LLVM-based (classic) flang [https://github.com/flang-compiler/flang] compilers tested
for the v0.1.7 release [https://github.com/Liam-Deacon/phaseshifts/releases/tag/v0.1.7].

Note

According to wikipedia [4] g77 is no longer included in the GCC project since v4
as the maintainer decided to no longer support it. Another prominent fortran compiler g95
was also discontinued in 2012 and has diverged considerably from the original GNU compiler
collection. As such it is possible that the fortran compiler included in the mingw32 toolchain
used in the original porting was one of these compilers and this would explain why additional
changes were required to compile the code with modern compilers.

[4]
https://en.wikipedia.org/wiki/GNU_Compiler_Collection#Fortran

Tip

Those wishing to perform a Windows build would be advised to use Anaconda [https://www.anaconda.com/]
and can be installed on Windows 10/11 using winget install --id Anaconda.Anaconda3.
Once installed, the conda environment can be installed with conda env create -f environment.yml
and activated with conda activate phaseshifts. The phshift2007 code could then be compiled with
gfortran -static-libgcc -static-libgfortran ... (however no modern Windows build has been tried yet)

8.2. Compiler Test Matrix

The following table compilers provides some summary information on compilers and platforms tested:

	Compiler

	Version

	Platform

	Architecture

	Status

	Notes

	Date Tested

	Commit / Tag

	gfortran

	11

	Ubuntu 22.04

	x86_64

	✔

	Built via ubuntu-latest GitHub Action runner [5]

	2024-01-21

	v0.1.8 [6]

	gfortran

	11

	Mac OS X 12

	x86_64

	✔

	Built via macos-latest GitHub Action runner [5]

	2024-01-21

	v0.1.8 [6]

[5]
(1,2)
https://github.com/Liam-Deacon/phaseshifts/actions/workflows/publish-to-pypi.yaml

[6]
(1,2)
https://github.com/Liam-Deacon/phaseshifts/releases/tag/v0.1.8

8.3. Known Issues

The following issues are known to exist in the current version of the code:

	The code is not thread-safe. This is due to the use of global variables
in the original code as well as large arrays that do not fit into stack memory.
This is not a major issue if the user is aware of this and the code is not
used in a multi-threaded context. Should the user need to ensure thread-safety,
a workaround is to run via ephemeral docker containers, see Running section.

	Many minor compiler warnings have been ignored, such as those related to
implicit typing of variables. These should be fixed in future releases.

9. Author list

	Below is a list of contributors who have helped to develop this package:
	
	Liam Deacon - current maintainer

9.1. Get Involved

If you would like to get involved in the phaseshifts project then
please create an issue [https://github.com/Liam-Deacon/phaseshifts/issues]
or a discussion [https://github.com/Liam-Deacon/phaseshifts/discussions]
on GitHub.

10. License

The MIT License (MIT)

Copyright (c) 2013-2024 Liam Deacon

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

11. APPENDIX I: Barbieri/Van Hove Phase Shift Package - A Brief User Guide

A. Barbieri, M.A. Van Hove

Lawrence Berkeley Laboratory,
University of California,
Berkeley,
California 94720, USA

11.1. Acknowledgement notice

Please acknowledge use of the Barbieri/Van Hove
phase shift package, as:

A. Barbieri and M.A. Van Hove, private communication.

11.2. Contact

M.A. Van Hove: vanhove@cityu.edu.hk

11.3. Contents

The following files should be included with the Barbieri/Van Hove
distribution. If any are missing please contact Michel Van Hove
(vanhove@cityu.edu.hk) for replacements.

	phshift2007.rst - This file contains this user guide
to use the phase-shifts programs. It should be
supplemented with the information contained in
the input files provided. Includes definitions of I/O files,
contents and basic hints on running the programs.

The files listed below contain FORTRAN programs that correspond to the basic
steps necessary to obtain the phase shifts needed in a LEED structural
determination.

	PhSh0.for - calculation of the atomic orbital charge densities.

	PhSh1.for - calculation of the muffin tin potential (bulk & slab).

	PhSh2*.for - calculation of phase shifts.

	PhSh3.for - removal of pi jumps from phase shifts.

INPUT-OUTPUT

Contains samples of the input and output files for the case of bulk
Rh and a [image: \text{Rh} (111)-(2 \times 2)- \text{C} _2 \text{H} _3] (H neglected) structure.

	atorbC : input of PhSh0 for C

	atorbRh : input of PhSh0 for Rh

	atC.i : output of PhSh0 for C

	atomic.i : input of PhSh1 for [image: \text{C} _2 \text{H} _3] on Rh(111)

	clusRh : input of PhSh1 for bulk Rh

	clusC2Rh : input of PhSh1 for [image: \text{C} _2 \text{H} _3] on Rh(111) (slab)

	ph1 : input of PhSh3 (Rh)

	ph2 : input of PhSh3 (C)

	leedph.d : output of PhSh3 (for [image: \text{C} _2 \text{H} _3] on Rh(111))

Not included are two output files:

	mufftin.d : output of PhSh1 for [image: \text{C} _2 \text{H} _3] (MTZ=-1.74)

	phasout : output of PhSh2rel for [image: \text{C} _2 \text{H} _3] on Rh(111)

11.4. Overview of the Programs

We explain here how to use the PHASE SHIFTS codes to obtain the
phase shifts which are needed in a LEED calculation.

This documentation does not try to explain any of the details and
subtleties of the calculation, but rather it simply tries to put
anybody with a minimum knowledge of basic quantum mechanics in the
position of obtaining good phase shifts. Additional documentation
is contained as comments within some of the codes (but not all!).

The various codes have been obtained from different authors, whose
names can be found in the source codes. The original codes were
modified to make them more general and, at input-output level,
so as to make their use more straightforward.

The codes have been tested on an IBM RISC 6000 workstation. There
is no guarantee that the programs will work correctly when
transported to different computers with different FORTRAN compilers.

Basically, the computation of phase-shifts appropriate for a LEED
calculation can be divided into several distinct steps:

11.4.1. Step 0: PhSh0.for

11.4.1.1. Description

First we need to perform a free atom self-consistent calculation
for each of the N elements for which phase shifts are required.
This is accomplished by using a self-consistent Dirac-Fock (i.e.
relativistic approach which computes, separately for each element,
the self-consistent atomic orbitals.
Notice that no local exchange approximation is made in these codes
but some other minor approximations are used; see program for
details.

The input needed at this stage is some basic information about
the shell structure of the atom under consideration, an example
of which is provided in the file ATORB for the case of Rhodium.
The information required is usually contained in any advanced
Chemistry or Solid State book (e.g. Ashcroft and Mermin, Solid
State Physics, Saunders College, 1976).

The orbitals can then be used to compute the total radial charge
densities associated to each element, which are collected in the
file atomic.i.

11.4.1.2. Files

INPUT: atorb

OUTPUT: atelem.i

To summarize, the user will run PhSh0.for for the different inputs
atorb1, atorb2, ….. atorbN, corresponding to the [image: N] elements of
interest and produce the corresponding output atelem1.i,
atelem2.i, …. atelemN.i for the charge density of each of the
[image: N] elements.

Note

The occupation number for each level corresponds to the
total number of electrons filling that level. For
instance, in the case of Rh, the orbital 3,2,2,-2.5
has [image: l = 2] and [image: j = 2 + 1/2]. The occupancy of the filled level
is then [image: N^+_{occ} = 2j + 1 = 6].
In the case of partially filled orbitals when the atomic
configuration available does not distinguish between
[image: l + 1/2] and [image: l - 1/2] levels, it is customary to assign the
occupancy so that the ratio for the partially filled
orbitals equals the ratio of the occupancies if those
orbitals were completely filled. Consider for instance
the case of Rh where the atomic configuaration (Ashcroft
and Mermin) is [Kr]4 d 8 5 s 1. There is no ambiguity
associated to the 5,0,0,1/2 level and [image: N_{occ} = 1] in that case.
As for the 4,2,2,3/2 and 4,2,2,5/2 levels the ratio of
full occupancies is 4/6 ; the eight 4 d electrons will then be
split among the two levels so as to preserve the 4/6
ratio: hence 3.2/4.8. The sum of all occupancies for a
neutral atom should of course equal [image: Z].

11.4.2. Step 1: PhSh1.for

11.4.2.1. Description

Run interactively

Now one computes the muffin tin potential by following Mattheiss’
prescription (Ref. T. L. Loucks, Augmented Plane Waves Method,
Benjamin, 1967). In essence, the atomic charge densities of the
different elements making up the structure that we are
interested in are superimposed to reflect the actual position of
these elements in the structure. Note that for the purpose of
obtaining the phase shifts needed in a LEED calculation it is not
necessary to know the exact position of the atoms in the structure
we are interested in, because the phase shifts and hence the
calculated intensities are not strongly dependent on the manner in
which the phase shifts are produced. (In principle, one could
iterate the phase shift calculation after the LEED structure
analysis to further refine the structure.) For the substrate atoms,
a bulk terminated structure will be sufficient in almost all cases.
In general, we prefer using a slab-supercell approach in defining
the surface structure rather than embedding the adatoms in a
sometimes artificial bulk structure. The slab is a free-standing
film with a thickness of a few atomic layers, repeated periodically
as a stack of identical slabs separated by slices of vacuum. The
main subtlety about the slab approach is related to the definition
of the muffin tin zero (see comment 3).

The total potential energy in each muffin-tin sphere is obtained
by adding the electrostatic component computed by using the charge
density distribution, and a local Slater-like exchange term.
The final potential is then shifted to set its zero at the level
of the average energy in the interstitial region (Muffin Tin Zero).
This part of the program is relatively well documented.

11.4.2.2. Files

INPUT:

	cluster.i - Mainly contains the structural information
about the slab which will be used to produce
the muffin-tin potential. See example
provided for a Rh crystal in clusterRh.i
and for a [image: \text{Rh} (111)-(2 \times 2)- \text{C} _2 \text{H} _3]
surface with H neglected in clusterC2Rh.i.

	atomic.i - It contains the atomic charge densities for
the NINEQ inequivalent atoms specified in
cluster.i. Furthermore,
atomic.i has to be generated from the output
atelemJ.i [image: J = 1, N] by appending the atelem*
files corresponding to the different elements
in the order in which they appear as
inequivalent atoms in the file cluster.i

	interactively: question: slab or bulk calculation?
answer: 1 (slab) or 0 (bulk)
enter value for bmtz (bulk muffin tin
zero; see comment 3)

	OUTPUT:
	
	mufftin.d

	check.o

	bmtz (if bulk calculation)

Note

	Cluster.i contains an option for producing output suitable
for the three versions of the next step. The value
of the alpha constant can be obtained from
K. Schwarz, Phys. Rev. B 5, 2466 (1972)

	Notice that an atelem.i corresponding to one element
might need to be appended more than once to generate
atomic.i. For instance in the case of clusterRh.i :
atomic.i = atelemRh.i + atelemRh.i + atelemRh.i

In the case of clusterC2Rh.i:

atomic.i = atelemRh.i + atelemRh.i + atelemRh.i +
atelemRh.i + atelemC.i + atelemC.i

Where ‘+’ indicates the appending of one file after the other

	The specification of the Muffin tin zero requires some
care when doing a calculation for a slab. Here by slab
we mean a specified geometry in cluster.i with a large
vacuum gap between slabs. The computed muffin tin zero
(mtz) is the average of the energy in the interstitial
region, including the vacuum: the average is highly distorted
by the presence of the vacuum. A reasonable value for
mtz is the bulk value even in the case of a slab
calculation (small errors are anyway adjusted by the
fitting of the inner potential in the LEED calculation).
Therefore the suggested procedure is the following:

	Perform first a bulk calculation for the substrate
with the appropriate input files. When asked whether
a bulk or slab calculation input 0 (bulk)
and record the output value of bulk mtz

	Perform a second slab calculation
(of course now with different input files); input 1 for
slab calculation and, when asked, use the
previously recorded value as input for bmtz.
The output of this second calculation will be used in
STEP 2.

Running this step interactively will clarify our points.

11.4.3. Step 2: PhSh2cav.for, PhSh2wil.for & PhSh2rel.for

11.4.3.1. Description

Here one computes the phase shifts from the muffin-tin
potential(s).

An important detail is that, as a function of energy, the
calculated phase shifts may, and often do, show discontinuities
by ::math::pi, i.e. jumps by ::math::pi at some energies.
Since the LEED programs interpolate phase shifts between energies at which
they are provided, such discontinuities would give totally
erroneous results at such discontinuities. Therefore these
discontinuities must be removed: this is done internally
in PhSh2wil.for, but separately in PhSh3.for after
PhSh2cav.for or PhSh2rel.for is run.

11.4.3.2. Different packages

	PhSh2cav.for is a Cavendish program which produces non-
relativistic phase shifts (Schroedinger equation), with
possible discontinuities in energy.

	PhSh2wil.for is a program, written originally by Williams,
which again produces non-relativistic phase shifts
(Schroedinger equation), but without continuities in energy.
This is the preferred program for non-relativistic
phase-shifts calculations.

	PhSh2rel.for computes relativistic phase shifts (Dirac
equation), but is possibly discontinuous in energy.

11.4.3.3. Files

	INPUT:
	
	mufftin.d - (as output from STEP 1)

	OUTPUT:
	
	phasout

	dataph.d

	inpdat

	leedph.d (in wil only)

Note

	Whether one can run the cav, wil or rel version
depends on the input NFORM specified in STEP 1 in
the input cluster.i.

	The energy range (20-300 eV) for which phase shifts are
computed, the energy spacing (5eV) and the number of
phase-shifts (13) are set. An easy way to modify these is
to use NFORM=2, because the values will appear in an
obvious way in the input mufftin.d. Such input (the
output of STEP 1) can be edited and the parameters can
be modified for each of the inequivalent atoms in the
calculation.

	The output phasout contains the phase shifts of all the
inequivalent atoms NIEQ (the number of such atoms was
specified in cluster.i of STEP 1) in the calculation.
phasout will be used to create the input files needed in
STEP 3.

	dataph.d is an output of the phase shifts in a form
suited to plotting such data.

11.4.4. Step 3: PhSh3.for

11.4.4.1. Description

Run interactively

The phase shifts produced from phsh2cav.for and phsh2rel.for
are not necessarily continuous in energy (since phase
shifts are defined modulo pi). phsh3.for makes them continuous
and produces output suitable as input for LEED programs.
For the output of phsh2wil.for, phsh3.for is used to reformat
the phase shifts.

11.4.4.2. Files

	INPUT:
	
	phJ [image: J = 1, N] generated from phasout. For this purpose
phasout must be split into files each containing
phase shifts of a single element. phJ will contain
the phase shifts of the J ‘th element in the
input file for the LEED programs (i.e. tleed5.i)

	OUTPUT:
	
	leedph.d

	dataph.d

Note

The actual number of sets of phase-shifts that one might
want to use in a LEED calculation might be different
from NINEQ. It is quite typical for instance to use a
single set of phase shifts to describe substrate atoms
in different layers.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 phaseshifts	

 	
 	
 phaseshifts.atorb	

 	
 	
 phaseshifts.conphas	

 	
 	
 phaseshifts.elements	

Index

 _
 | A
 | C
 | E
 | G
 | L
 | M
 | P
 | R
 | S

_

 	
 	__fix_path() (phaseshifts.conphas.Conphas method)

 	
 	__set_data() (phaseshifts.conphas.Conphas method)

A

 	
 	Atorb (class in phaseshifts.atorb)

C

 	
 	calculate() (phaseshifts.conphas.Conphas method)

 	calculate_Q_density() (phaseshifts.atorb.Atorb static method)

 	
 	CLEED_PHASE, [1]

 	Conphas (class in phaseshifts.conphas)

 	CSEARCH_LEED

E

 	
 	
 environment variable

 	CLEED_PHASE, [1]

 	CSEARCH_LEED

 	PHASESHIFT_LEED, [1]

G

 	
 	gen_input() (phaseshifts.atorb.Atorb static method)

 	get_electron_config() (in module phaseshifts.atorb)

 	
 	get_element() (in module phaseshifts.atorb)

 	get_quantum_info() (phaseshifts.atorb.Atorb static method)

L

 	
 	load_data() (phaseshifts.conphas.Conphas method)

M

 	
 	
 module

 	phaseshifts

 	phaseshifts.atorb

 	phaseshifts.conphas

 	phaseshifts.elements

P

 	
 	PHASESHIFT_LEED, [1]

 	
 phaseshifts

 	module

 	
 phaseshifts.atorb

 	module

 	
 	
 phaseshifts.conphas

 	module

 	
 phaseshifts.elements

 	module

R

 	
 	read_datafile() (phaseshifts.conphas.Conphas method)

 	
 	replace_core_config() (phaseshifts.atorb.Atorb static method)

S

 	
 	set_format() (phaseshifts.conphas.Conphas method)

 	set_input_files() (phaseshifts.conphas.Conphas method)

 	
 	set_lmax() (phaseshifts.conphas.Conphas method)

 	set_output_file() (phaseshifts.conphas.Conphas method)

 	split_phasout() (phaseshifts.conphas.Conphas static method)

About the code

The example source codes provided in this package are intended to be
instructional in calculating phase shifts. While it is not recommended to
use the example code in production, the code
should be sufficient to explain the general use of the library.

If you aren’t familiar with the phase shift calculation process, you can
read further information in doc/ folder:

	phshift2007.rst -
a brief user guide/documentation concerning the input files
(& details of the original fortran phshift package).

	phaseshifts API reference - a more detailed overview of the library
functions and how to calculate phase shifts using the convenience functions in this package.
This is not yet finished and so the reader is referred to the above document for the time being.

For those wanting a crash course of the Van Hove / Tong programs, I advise reading the
phsh2007.txt document.
See the examples/ directory to get an idea of the structure of the input files
(for a random selection of models & elements). In particular see the cluster_Ni.i
file for helpful comments regarding each line of input.

Tip

There is also a nice diagram overview (ignoring the LEED parts) contained within the
AQuaLEED poster [https://physics.mff.cuni.cz/kfpp/povrchy/files/1179-Poster.pdf]
available online.

Those of you who are eager to generate phase shifts - first look at the example
cluster files for a bulk and slab calculation, noting that the atoms in the model
are in fractional units of the a basis vector for the unit cell (SPA units). Next,
after creating a bulk and slab model in the cluster.i format, simply use
the following python code:

>>> from phaseshifts.phsh import Wrapper as phsh
>>> phsh.autogen_from_inputs(bulk_file, slab_file)

This will hopefully produce the desired phase shift output files (at least for
simple models) and works by assessing the two models to determine what output to
produce. For more detailed documentation and function use refer to the pdf manual.

Tip

A standalone command line utility phsh.py is provided as a way of
automating the generation of phase shifts as part of a script. For more
information use:

phsh.py --help

Note

The phaseshifts.leed module provides a conversion class for CLEED .inp and
.bul files. This is included as part of the phsh.py module,
however the file extension is important (needs .inp, .pmin, .bul,
or .bmin) and error checking is limited. There are also plans to include a
validator to check the files for mal-formatted input at some point in the
future.

Alternatives

A number of alternatives are available, notably the following:

	AQuaLEED [https://physics.mff.cuni.cz/kfpp/povrchy/files/] (with a useful
poster overview of phaseshifts calculations [https://physics.mff.cuni.cz/kfpp/povrchy/files/1179-Poster.pdf]).
This is an officially mentioned piece of software on Michel Van Hove’s
LEED Calculation Homepage [https://www.icts.hkbu.edu.hk/VanHove_files/leed/leedpack.html].
Furthermore, although the poster mentions that the software is written in python,
this software is not (currently) distributed on https://PyPI.org (or via alternative means such as a docker image
on DockerHub [https://www.docker.com/products/docker-hub/]) and therefore harder to
intergrate with other python LEED-related projects such as CLEED [https://github.com/Liam-Deacon/CLEED]
and cleedpy [https://github.com/empa-scientific-it/cleedpy].

	Elastic Electron-Atom Scattering in Solids and Solid Surfaces
(EEASiSSS) [https://www.researchgate.net/profile/John-Rundgren-2/publication/235583683_Optimized_surface-slab_excited-state_muffin-tin_potential_and_surface_core_level_shifts/links/5a266f89a6fdcc8e866bd7e5/Optimized-surface-slab-excited-state-muffin-tin-potential-and-surface-core-level-shifts.pdf]
is authored by John Rundgren and first described in the paper: “J. Rundgren Phys. Rev. B 68 125405 (2003)”.
This program takes a different approach to calculating phase shifts by using optimised muffin-tin potentials
for surface slabs with preassigned surface core-level shifts.
Whilst the source code is not publicly available online (to this author’s best knowledge), John Rundgren
has been more than happy to assist when approached in the past.

Note

It would be fantastic to include this software (and document it’s use) as part of the phaseshifts python package
allowing the user to choose the backend they wish to use for calculating phase shifts (e.g. EEASiSSS or phshift2007).
As such John Rundgren [https://www.researchgate.net/profile/John-Rundgren-2] should be contacted to see if
he would be happy to collaborate on making this possible. This is being tracked by
this item [https://github.com/Liam-Deacon/phaseshifts/issues/92].

	A fortran program is described in “McGreevy, E., & Stewart, A.L. (- Apr 1978). [https://inis.iaea.org/search/search.aspx?orig_q=RN:9399501]
A program for calculating elastic scattering phase shifts for an electron colliding with a one-electron target using perturbation theory.
Computer Physics Communications, 14(1-2), 99-107.”, however this code is not publicly available online (pay-walled by journal).

Note

Should you know of alternatives, please either
open an issue [https://Liam-Deacon/phaseshifts/issues] or
(better yet) create a PR with changes to this documentation
to keep this list up to date.

 _images/math/239e47d1faad6ca2f0aa2a57ac8a9fae7c1a28ef.png
j=2+1/2

_images/math/2ac8c689b53e9a8fd35ccee99ddf74b27583569b.png
Rh(111) — (2 x 2) — C5H3

_images/math/0ea33e973a0a9279eaa10d5db9ffd13282fc2761.png

_images/math/3a1566b32cb2e6ae1beaa7fda234d15a4d24de79.png
n>=»u

_images/math/3bfb3a64189a14b2704f4610827762d5e3145114.png

_images/math/4fdd479bfe755fed38ed2a4c5e0abc3ba3162acb.png

nav.xhtml

 Table of Contents

 		
 Welcome to phaseshifts’s documentation!

 		
 Introduction

 		
 About the code

 		
 Alternatives

 		
 Installing the phaseshifts package

 		
 TDLR;

 		
 Details

 		
 Running

 		
 Contact

 		
 Acknowledgements

 		
 Thanks

 		
 Scripts

 		
 phsh.py

 		
 Command line usage

 		
 CLEED compatibility

 		
 phaseshifts API

 		
 Package Contents

 		
 Subpackages

 		
 Submodules

 		
 phaseshifts.atorb

 		
 phaseshifts.conphas

 		
 phaseshifts.elements

 		
 phaseshifts.leed

 		
 phaseshifts.model

 		
 phaseshifts.phsh

 		
 phshift2007 Porting Notes

 		
 Compiler Notes

 		
 Compiler Test Matrix

 		
 Known Issues

 		
 Author list

 		
 Get Involved

 		
 License

 		
 APPENDIX I: Barbieri/Van Hove Phase Shift Package - A Brief User Guide

 		
 Acknowledgement notice

 		
 Contact

 		
 Contents

 		
 Overview of the Programs

 		
 Step 0: PhSh0.for

 		
 Step 1: PhSh1.for

 		
 Step 2: PhSh2cav.for, PhSh2wil.for & PhSh2rel.for

 		
 Step 3: PhSh3.for

_images/math/5599e9d35e1bb4a4768bdbddcbbb67bac6e60957.png
[+1/2

_images/math/81e0d87a75aef8d4c1c269b4d09688ff7c10ab3c.png

_images/math/51cc2cf4b124d97a3925fa4336fca9bb6b1b2112.png

_images/math/51f0a2d42be923cfb264d05e50e8e162c24f40a7.png

_images/math/91632d3dcbfdc49abaf14e61da894dcddc2fd36b.png
M}

_images/math/91d85f79f46a242dba5d2a80e853a250c956c82d.png
ag =~ 0.539A

_images/math/822d9e9af19d5e091ff207b7eb306f2acc37fc57.png
NI =25+1

_images/math/8efe428ac7598a0ba4f2a8cbc2b147ce141259e2.png

_images/math/95f028ab2b20b895fa12d986e0d9f40f7b6e52d3.png

_images/math/9739d752ebcd6d48e3a26e80dc311568d5856a0d.png

_images/math/976ca38abcba694d23acd21ba3da8de2848b5920.png

_images/math/bb7078ecc7637f4d28128fd8a7bb814d398afcd4.png
s+

_images/math/c1821953c20a452b0aa9ff6f8fb7c1a5c71818e8.png

_images/math/99aa7fe8c535928a02092093434a2a14b72f5480.png
1,2, 0.

N, — 1. n,

_images/math/a8b862db435c41de33f08761376ee8d41fe507b7.png
> oce(j) - phe(i, 5)? /(4.0m r(i)?)

_images/math/d2ad8254b79ab50a2e782130f9ccbbd7d049c58a.png
phe(i,)

_images/math/dac3c4306230dbff62c9535bd0bc3017eb1af7da.png

_images/math/c40ce692fede9129438ac3cc8aae38e6980cfe9e.png

_images/math/c910b0b09e2fb47847dbe57b6da10c781f28bcfd.png

_images/math/e3b1742d5560681a131bb782e359ea192f2b5271.png

_images/math/f3d3f71e01ba23cff0448497b0b437714b893dff.png
Tomin * (Tmaz/Tmin) &™)

_images/math/daeb4ae542e33bde9d1d2c6ea46f1acbbb34ef78.png
F(i,j)2+ G(i,5)?

_static/file.png

_images/math/fc7bf9e79e5f72e8cc0e03c324e802692dc412e6.png

_static/plus.png

_static/minus.png

_static/phaseshifts.png

